REPORT NO. 55E 812 DATE 14 July 1961 NO. OF PAGES 11

CONVAIR ASTRONAUTICS

CONVAIR DIVISION OF GENERAL DYNAMICS CORPORATION

MECHANICAL PROPERTIES OF ADLOCK 851 AT ROOM TEMPERATURE, 1000°, -320° AND -423°F

REPORT NO. 55E 812

PREPARED BY L

CHECKED BY

F. P. Brodell
Senior Engineering Metallurgist

APPROVED BY

REVISIONS

1		* * * * * * * * * * * * * * * * * * *	and the second of the second o	
NO ,	DASC	<i>₽.</i> €	CHANGE	PAGES AFFECTED
i i		10 1 1 22 22 22 22 3 2 2 2 2 2 2 2 2 2 2 2	a si kana kampana ni si kampanya dampa ni a si si s	Enter the community of the product o
		• • - • - • - •	· · · · · · · · · · · · · · · · · · ·	
		,		1
		· · · · · · · · · · · · · · · · · · ·	and the second of the second o	#

REPORT	55E 812	
PAGE	i	

TABLE OF CONTENTS

	Page
<u>OBJECT</u>	1
CONCLUSIONS	1
SPECIMENS	1
PROCEDURE	1
RESULTS	3
FIGURES	
1 Structures Standard OOl Doubler - Less Coupon	5
2 Flexural Specimen	6
3 Adlock 851 - Flexural Properties of	7
4 Adlock 851 - Tensile Properties of	8
5 Flexure Test Set Up at 1000°F Under Constant Load	9
6 Actual Test Run of Flexure Test at 1000°F	10

REPORT_	55E	812	
PAGE_		L	

MECHANICAL PROPERTIES OF ADLOCK 851 AT ROOM TEMPERATURE, 1000°, -320° AND -423°F

OBJECT:

To determine the tensile and flexural properties of Adlock 851 fiberglass laminate at room temperature, 1000°, -320° and -423°F.

CONCLUSIONS:

Flexural Test.

The maximum fiber stress for this particular cure of Adlock 851 increased from 65.4 ksi at 78° to 84.3 ksi at -320°F. Fiber stress values then decreased from 84.3 ksi at -320°F to 81.0 ksi at -423°F. Deflection values to failure also follow the same trend, i.e., increasing from 0.121 inches at 1000°F to 0.149 inches at -320°F and then decreasing to 0.117 inches at -423°F. Modulus of elasticity values increase consistently with decreasing temperature from 2.92 x 10° at 78° to 3.49 x 10° at -423°F.

Tensile Properties.

The tensile properties of Adlock 851 follow along the same general lines as the flexural test results. The ultimate strength increased from 31.5 ksi at 1000°F to 73.6 ksi at -320°F. From -320°F to -423°F, the ultimate strength decreased from 73.6 ksi to 63.6 ksi.

SPECIMENS:

The tensile specimens were the standard 9 inch coupons machined according to Structural Standard OO1 (Figure 1).

Flexural specimens were machined according to Figure 2.

PROCEDURE:

Flexure specimens tested at 1000°F were heated to this temperature on one side only. It took 90 seconds to reach 1000°F from ambient.

REPORT	5 5 E	812	
PAGE	2	2	

A static load of 6 ksi was placed on the flexure specimens prior to heating. Photographs of the test set up are shown in Figures 5 and 6. Heat was applied to the flexure specimens with a series of quartz heat lamps, whose output was controlled by a 115V variable autotransformer. Temperature readings were followed by attaching a thermocouple to the heated side of the specimen and recording millivolt output on a Sanborn 150 Recorder. Deflection values were determined by using a linear transducer in conjunction with a Sanborn 150 Recorder. Maximum deflection values, at failure, were recorded at the highest temperature reached.

Flexural tests at the other temperatures used the same test set up but the environment was changed to room temperature, liquid nitrogen and liquid hydrogen for the other reported temperature.

From the recorded values, maximum fiber stress and modulus of elasticity in bending was calculated. The following formulas were used to calculate maximum fiber stress and the modulus of elasticity in bending respectively:

$$(1) S = \frac{3PL}{2bd^2}$$

Where S = maximum fiber stress psi

P = maximum load in pounds

L = distance between supports, inches

b = width of beam tested, inches

d = depth of beam tested, inches

(2)
$$E_B = \frac{L^3}{4bd^3}$$
 (P/Y)

Where $E_B = modulus$ of elasticity in bending

L = distance between supports, inches

b = width of beam tested, inches

d = depth of beam as tested, inches

P/Y = slope of straight line portion of load deflection curve in pounds/inch

Tensile specimens were tested at 1000°F, ambient, -320°F and -423°F. Stress strain curves were run on each specimen.

CONVAIR	ASTRONAUTICS
---------	--------------

REPORT	55E	812
PAGE	3	3

RESULTS AND DISCUSSION:

The results of the flexural and tensile data at 1000°F, room temperature, -320°F and -423°F are given in Figures 3 and 4. The values reported for the tensile test are open to question for the following reasons:

- 1. Many of the specimens failed in the end fitting at 1000°F.
- 2. All of the ambient tensile specimens failed in the radius and not in the center of the test area.
- 3. Failure at cryogenic temperatures was either in the end fitting, in the radius, or was initiated by the knife edges which were used to obtain stress train data.

The tensile data is recorded in Figure 4.

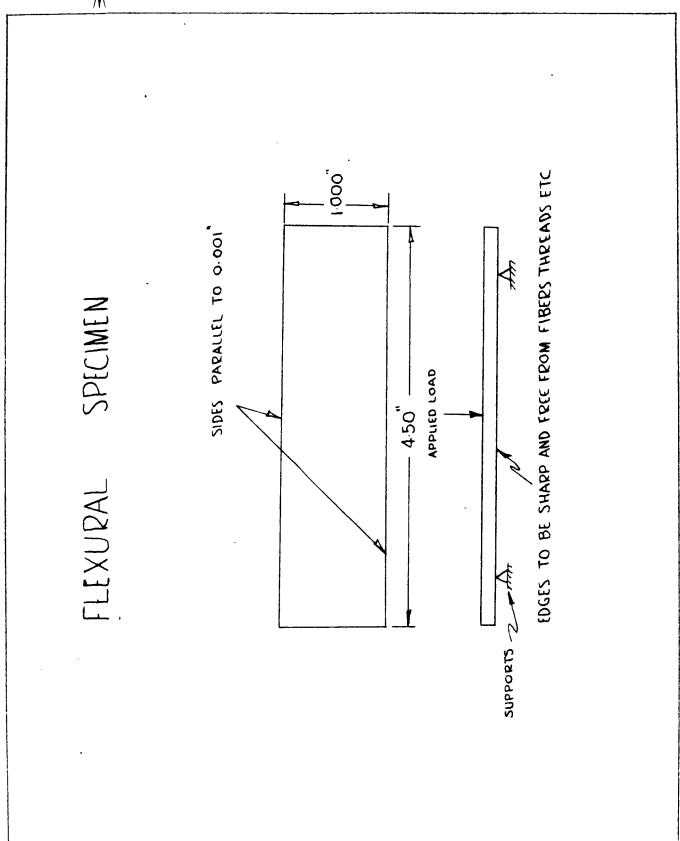
REPORT_	55E	812
PAGE	4	}

PHOTO INDEX

Figure No.	Photo No.	<u>Title</u>	Page
5	56601A	Flexure Test Set Up for Use at 1000°F Under Constant Load	10
6	56600A	Flexure Test of Constant Load	11

- 5000 1 1 5 pro troit 10 pro t

NOTES


- 1. Holes on centerline of test section within \pm .005.
- 2. Gradual taper from $\mathbf{W_2}$ to $\mathbf{W_1}$ of .004 \pm .001 in. $\mathbf{W_2}$ to be greater than $\mathbf{W_1}$.
- 3. Test section to have sharp corners free from burrs.
- 4. No undercut at intersection of radius and test section.
- 5. Identify here by electro etch with Heat No., Coil No., Specification No., and Specimen No.

DOUBLE LESS COUNCIL TO SHEET 1 OF 1

CONVAIR ASTRONAUTICS

REPORT 55E 812

PAGE 6

CONVAIR: A DIVISION OF GENERAL DYNAMICS CORPORATION

PREPARED CHECKED REVISED PAGE 7
REPORT NO. 55E 812

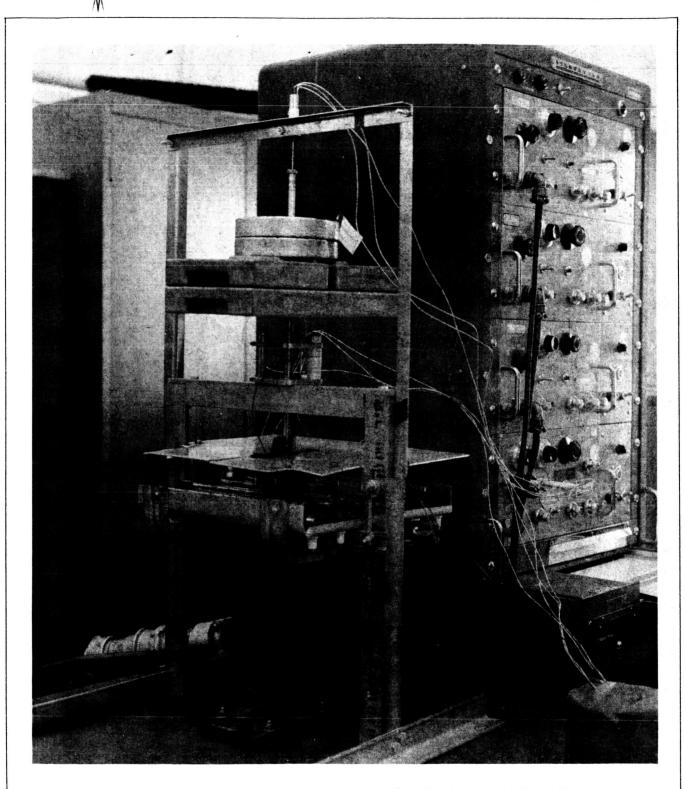
MODEL

		URE PEMARKS	FRACTURED AT 975 - FAILED IN TENSION FIBERS	NO FAILURE AT 1000 F	NO FAILURE AT 1000 F	FRACTURED AT 987 F- FAILED IN TENSION FIBERS	NO FAILURE AT 1000"F		T (78°F)	UUS REMARKS			-	ALL FAILURES OCCURED IN TENSION FIBERS						<u>ц</u>	yeus Remarks			ALL FAILURES OCCURED IN COMPRESSION FIBERS			
	FLEXUPE - 1000 F	MAX DEFLECTION TEMPERATURE	0.096 975	0.120 1000	0.105 1000	0.115 987	0.170 1000	0.121	FLEXURE - AMBIENT (78°F)	MAX DEFLECTION BEND MOD	0.132 2.81	0.133 2.86	0.126 3.13	0.123 3.39	0.114 2.88	0.115 2.91	0.116 2.57	0.125 2.81	0.123 2.92	FLEXURE320°F	MAX DEFLECTION BEND MODULUS	0.156 3.08	0.131 3.44	0.164 3.41	0.172 3.33	0.150 3.36	
\bigcirc		APPLIED STRESS M		5.5	5.0	0.9	0.9			MAX EIBER STRESS M	_	67.4	2.69	72.6	62.5	62.5	55.3	65.3	65.4		MAX FIBER STRES		6.17	99.5	101.4	9.68	
\bigcirc		SPECIMEN NO	61	28	29	30	37			SPECIMEN NO	3	4	12	13	20	12	31	32			SPECIMEN NO	5	9	41	15	22	
\bigcirc					à			AVERAGE											AVERAGE								

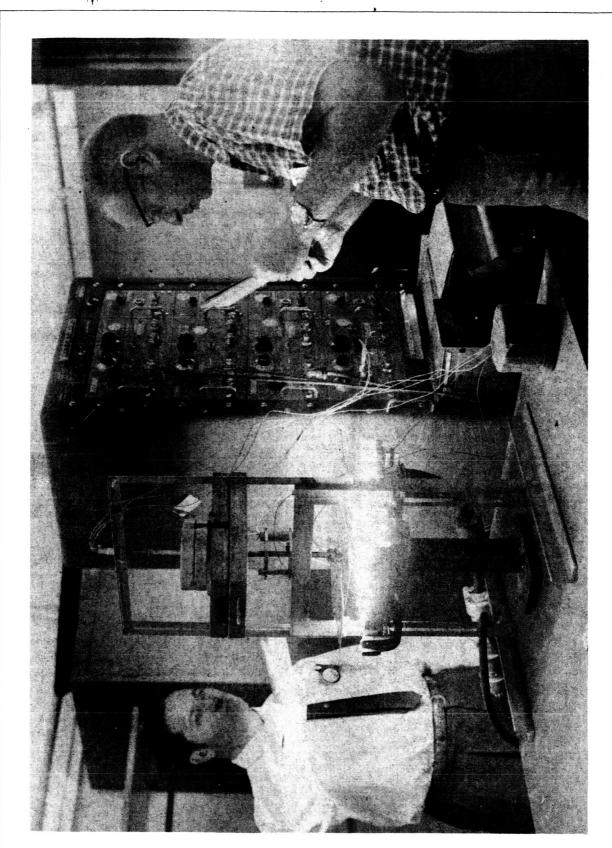
CONVAIR: A DIVISION OF GENERAL DYNAMICS CORPORATION

PAGE 8
REPORT NO. 55E 812
MODEL

_	_			_			,	,	, II	,	ĻL	//\	<u> </u>					 	 			
)		ON FIBERS								CIBERS.											
			IN COMPRESSION FIBERS	-			RKS				DMPRESSION											
			FAILURES OCCURED				PEMARKS				OCCURED IN COMPRESSION											
	(0		ALL FAILI								ALL FAILURES											
	320°F (CONT'D)	3.39	2.87	16.2	3.22	E423°F	BEND MODULUS	3.28	3.52	3.51	3.70	3.99	3:39	3.44	3.10	3.49						
	FLEXURE	0.154	0.128	0.138	0.149	FLE XURE.	MAX DEFLECTION	6.113	860-0	0.130	0.146	0.112	0.133	0.094	111.0	211.0	-					
		1.68	₽.89	73.1	84.3		MAX FIBER STRESS	75.4	73.8	6.58	6:86	87.8	8.68	l·99	6-89	81.0						
\bigcirc		23	33	34			SPECIMEN NO	7	8	91	17	24	25	35	36							
\bigcirc			,		AVCRAGE											AVERAGE						


CONVAIR: A DIVISION OF GENERAL DYNAMICS CORPORATION

PREPARED CHECKED REVISED PAGE 9
REPORT NO. 55E 812


MODEL

				,	,	,				.	Μ		,	,		,			, ,	,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	
										S															
\supset	RKS	ITTING						eks		BROKE IN THE RADIUS				RKS	NIFE EDGES					PKS	3503 3				
\supset	PEMARKS	LED IN END FITTING						REMARKS						REMARKS	FAILURE MITIATED BY WHIFE FOGES	END FITTING	RADIUS	RADIUS		REMARKS	BREAK AT KNIFE	NTED .	NTEO		
00°F	•	FAL					BIENT (78°F)			ALL SPECIMENS			-320°F		FAILURE N	FAILED IN	FAILED IN	FAILED IN	423°F		SHARP 8	DELAMINATED	DELAMINATED		2
TENSILE DATA- 1000°F	ULT STRENGTH	- <u>8</u>	2.6	12.5	0.6	18:5	TENSILE DATA ANBIENT (78°F)	ULT STRENGTH	36.2	34.1	34.9	34.6	TENSILE DATA	ULT STRENGTH	44.1*	78.0	8.92	1.99	TENSILE DATA - +	ULT STRENGTH	41.0 *	63.3	54.5	*	DECEMBER OF THE PERSON OF THE
TEN	TEST OF TEMP		0001	0001	0001	0001	TE	TEST , TEMP	78	78	7.8	78	12	TEST TEMP	- 320	- 320	-320	-320	18	TEST TEMP		- 423	-423		100000000000000000000000000000000000000
\supset	SPECIMEN NO	_	2	6	=	71		SPECIMEN NO	9	4	13	14		SPECIMEN NO	2	9	15	91		SPECIMEN NO	7	8	21		בכ ווונטנ פוע
							13.5						35.0						73.6			-		63.6	70114/1 LUCK THE
							AVE. YLTIMATE						AVE. YLTIMATE						AVE. ULTIMATE					AVE ULTIMATE	

PAGE 10

FLEXURE TEST SET UP FOR USE AT 1000°F UNDER CONSTANT LOAD FIGURE NO. 5

ACTUAL TEST RUN OF FLEXURE TEST AT 1000°F FIGURE NO. 6